2014年人教A版选修2-1教案 3.2立体几何中的向量方法


3.2 立体几何中的向量方法
第一课时 立体几何中的向量方法(1) 教学要求:向量运算在几何证明与计算中的应用.掌握利用向量运算解几何题的方法,并能 解简单的立体几何问题. 教学重点:向量运算在几何证明与计算中的应用. 教学难点:向量运算在几何证明与计算中的应用. 教学过程: 一、复习引入 1. 用向量解决立体几何中的一些典型问题的基本思考方法是: ⑴如何把已知的几何条件 (如 线段、角度等)转化为向量表示; ⑵考虑一些未知的向量能否用基向量或其他已知向量表 式; ⑶如何对已经表示出来的向量进行运算,才能获得需要的结论? 2. 通法分析:利用两个向量的数量积的定义及其性质可以解决哪些问题呢? ⑴利用定义 a·b=|a||b|cos<a,b>或 cos<a,b>= a ? b ,可求两个向量的数量积或夹角
a ?b

问题; ⑵利用性质 a⊥b ? a·b=0可以解决线段或直线的垂直问题; ⑶利用性质 a· a=|a|2,可以解决线段的长或两点间的距离问题. 二、例题讲解 1. 出示例 1:已知空间四边形 OABC 中, OA ? BC , OB ? AC .求证: OC ? AB . 证明: OC · AB = OC · (OB ? OA ) = OC · OB - OC · OA . ∵ OA ? BC , OB ? AC , ∴ OA · BC ? 0 , OB · AC ? 0 ,

OA · (OC ? OB ) ? 0 , OB · (OC ? OA ) ? 0 .
∴ OA · OC ? OA · OB , OB · OC ? OB · OA . ∴ OC · OB = OC · OA , OC · AB =0. ∴ OC ? AB 2. 出示例 2: 如图, 已知线段 AB 在平面 α 内, 线段 AC ? ? , 线段 BD⊥AB, 线段 DD ' ? ? , ?DBD ' ? 30 ,如果 AB=a,AC=BD=b,求 C、D 间的距离. 解:由 AC ? ? ,可知 AC ? AB . 由 ?DBD ' ? 30 可知,< CA ,BD >= 120 , ∴ | CD |2 = (CA ? AB ? BD )2 = | CA |2 + | AB |2 + | BD |2 + 2( CA · AB + CA · BD +

AB · BD )
= b2 ? a 2 ? b2 ? 2b2 cos120 = a 2 ? b 2 . ∴ CD ? a2 ? b2 . 3. 出示例 3:如图,M、N 分别是棱长为 1 的正方体 ABCD ? A ' B ' C ' D ' 的 棱 BB ' 、 B ' C ' 的中点.求异面直线 MN 与 CD ' 所成的角. 解:∵ MN = (CC ' ? BC ) , CD ' = CC ' ? CD , ∴ MN · CD ' =

1 2

1 1 CC ' + (CC ' ? BC ) · (CC ' ? CD ) = ( | CC ' |2 + CC ' CD + BC · 2 2

BC · CD ).
∵ CC ' ? CD , CC ' ? BC , BC ? CD ,∴ CC ' CD ? 0 , BC · CC ' ? 0 , BC · CD ? 0 , ∴ MN · CD ' =

1 1 1 | CC ' |2 = . …求得 cos< MN ,CD ' > ? ,∴< MN ,CD ' >= 60 . 2 2 2

4. 小结:利用向量解几何题的一般方法:把线段或角度转化为向量表示式,并用已知向量 表示未知向量,然后通过向量的运算去计算或证明.

第二课时 立体几何中的向量方法(2) 教学要求:向量运算在几何证明与计算中的应用.掌握利用向量运算解几何题的方法,并能 解简单的立体几何问题. 教学重点:向量运算在几何证明与计算中的应用. 教学难点:向量运算在几何证明与计算中的应用. 教学过程: 一、复习引入 讨论:将立体几何问题转化为向量问题的途径? (1)通过一组基向量研究的向量法,它利用向量的概念及其运算解决问题; (2)通过空间直角坐标系研究的坐标法,它通过坐标把向量转化为数及其运算来解决问 题. 二、例题讲解 1. 出示例 1: 如图,在正方体 ABCD ? A1B1C1D1 中,E、F 分别是 BB1 、 CD 的中点,求证: D1 F ? 平面 ADE. 证明:不妨设已知正方体的棱长为1个单位长度,且设 DA =i,DC = j, DD1 =k.以 i、j、k 为坐标向量建立空间直角坐标系 D-xyz,则 ∵ AD =(-1,0,0),D1F =(0, 又

又 说明:⑴“不妨设”是我们在解题中常用的小技巧,通常可用于设定某些与题目要求无关 的一些数据,以使问题的解决简单化.如在立体几何中求角的大小、判定直线与直线或直线 与平面的位置关系时,可以约定一些基本的长度.⑵空间直角坐标些建立,可以选取任意一 点和一个单位正交基底,但具体设置时仍应注意几何体中的点、线、面的特征,把它们放在 恰当的位置,才能方便计算和证明. 2. 例:证:如果两条直线同垂直于一个平面,则这两条直线平行. 改写为:已知:直线 OA⊥平面 α,直线 BD⊥平面 α,O、B 为垂足.求证:OA//BD. 证明: 以点 O 为原点, 以射线 OA 为非负 z 轴, 建立空间直角坐标系 O-xyz, i,j,k 为沿 x 轴,y 轴,z 轴的坐标向量,且设 BD = ( x, y , z ) . ∵BD⊥α, ∴ BD ⊥i, BD ⊥j, ∴ BD ·i= ( x, y , z ) ·(1,0,0)=x=0, BD ·j= ( x, y , z ) ·(0,1,0)=y=0,

1 1 ,-1), ∴ AD ·D1F =(-1,0,0)· (0, ,-1)=0, ∴ D1 F ? AD. 2 2 1 1 1 ∴ D1 F ? AE. AE =(0,1, ),∴ AE · D1F =(0,1, )·(0, ,-1)=0, 2 2 2 AD AE ? A , ∴ D1 F ? 平面 ADE.

∴ BD =(0,0,z).∴ BD =zk.即 BD //k.由已知 O、B 为两个不同的点,∴OA//BD. 3. 法向量定义: 如果表示向量 a 的有向线段所在直线垂直于平面 α, 则称这个向量垂直于平 面 α,记作 a⊥α.如果 a⊥α,那么向量 a 叫做平面 α 的法向量. 4. 小结: 向量法解题“三步曲” : (1)化为向量问题 →(2)进行向量运算 →(3)回到图形问题.

第三课时 立体几何中的向量方法(3) 教学要求:向量运算在几何证明与计算中的应用.掌握利用向量运算解几何题的方法,并能 解简单的立体几何问题. 教学重点:向量运算在几何证明与计算中的应用. 教学难点:向量运算在几何证明与计算中的应用. 教学过程: 一、复习引入 1. 法向量定义:如果直线 l ? 平面? , 取直线 l 的方向向量为 a ,则向量 a 叫作平面α 的法 向量(normal vectors). 利用法向量,可以巧妙的解决空间角度和距离. 2. 讨论:如何利用法向量求线面角? → 面面角? 直线 AB 与平面α 所成的角 ? ,可看成是向量 AB 所在直线与平面α 的法向量 n 所在直 线夹角的余角, 从而求线面角转化为求直线所在的向量与平面的法向量的所成的线线角, 根 据两个向量所成角的余弦公式 cos a, b ?
AB n AB n

ab a b

,我们可以得到如下向量法的公式:

sin ? ? cos AB, n ?

.

3. 讨论:如何利用向量求空间距离? 两异面直线的距离,转化为与两异面直线都相交的线段在公垂向量上的投影长. 点到平面的距离,转化为过这点的平面的斜线在平面的法向量上的投影长. 二、例题讲解: 1. 出示例 1:长方体 ABCD ? A1B1C1D1 中,AD= AA1 =2,AB=4,E、F 分别是 A1 D1 、AB 的中 点,O 是 BC1与B1C 的交点. 求直线 OF 与平面 DEF 所成角的正弦. 解:以点 D 为空间直角坐标系的原点,DA、DC、 DD1 为坐标轴, 建立如图所示的空间直角坐标系. 则 D(2,2,0), E (1,0,2), F (2,2,0), O(1,4,1), C (0,4,0) . 设平面 DEF 的法向量为 n ? ( x, y, z ) ,

? ? n ? DE 则? , ? ? n ? DF

而 DE ? (1,0,2) , DF ? (2,2,0) .

? ?x ? 2z ? 0 ? n DE ? 0 ∴ ? ,即 ? , 解得 x : y : z ? ?2 : 2 :1 , ∴ n ? (?2,2,1) . 2 x ? 2 y ? 0 n DF ? 0 ? ? ?
∵ n ? OF ?| n || OF | cos? , ∴ cos? ? 而 OF ? (1, ?2, ?1) .

n ? OF ?2 ?1 ? 2 ? (?2) ? 1? (?1) 7 6 ? ?? 18 | n | ? | OF | (?2)2 ? 22 ? 1 12 ? (?2)2 ? (?1)2

7 6 . 18 2. 变式: 用向量法求:二面角 A1 ? DE ? O 余弦;OF 与 DE 的距离;O 点到平面 DEF 的距
所以,直线 OF 与平面 DEF 所成角的正弦为 离.


相关文档

更多相关文档

2014年人教A版选修2-1课件 3.2 立体几何中的向量方法
3.2立体几何中的向量方法第1课时 空间向量与平行关系 教案(人教A版选修2-1)
高中数学选修2-1人教A教案导学案3.2立体几何中的向量方法
选修2-1_3[1].2立体几何中的向量方法教案
3.2立体几何 中的向量方法2教案 新人教A版选修2-1
数学选修2-1《第三章3.2立体几何中的向量方法》教案
3.2立体几何中的向量方法第3课时 空间向量与空间角 教案(人教A版选修2-1)
高中数学选修人教A教案导学案第3章 空间向量与立体几何 §3.2 (二)—— 利用向量方法求角
高中数学选修人教A教案导学案第3章 空间向量与立体几何 §3.2 立体几何中的向量方法
3.2立体几何中的向量方法第2课时 空间向量与垂直关系 教案(人教A版选修2-1)
选修2-1 3.2立体几何中的向量方法教案
高中数学选修2-1人教A教案导学案3.2立体几何中的向量方法
高中数学选修2-1新教学案:3.2立体几何中的向量方法(1)
空间向量在立体几何中的应用教案(教师使用)
选修2-1教案 3.2立体几何中的向量方法
电脑版