多面体的外接球半径的几种求法

多面体外接球半径常见的几种求法
白维亮 如果一个多面体的各个顶点都在同一个球面上,那么称这个多面体是球的内接多面体, 这个球称为多面体的外接球.有关多面体外接球的问题,是立体几何的一个重点,也是高考 考查的一个热点.研究多面体的外接球问题,既要运用多面体的知识,又要运用球的知识, 并且还要特别注意多面体的有关几何元素与球的半径之间的关系, 而多面体外接球半径的求 法在解题中往往会起到至关重要的作用. 公式法 例 1 一个六棱柱的底面是正六边形,其侧棱垂直于底面,已知该六棱柱的顶点都在同 一个球面上,且该六棱柱的体积为

9 ,底面周长为3,则这个球的体积为 8

.

6 x ? 3, ? ? ? ?x? 解 设正六棱柱的底面边长为 x ,高为 h ,则有 ? 9 3 2 ?? x h, ? ? ? 6? 4 ?h ? ?8
∴正六棱柱的底面圆的半径 r ?

1 , 2 3.

1 3 ,球心到底面的距离 d ? .∴外接球的半径 2 2

R ? r 2 ? d 2 ? 1.?V 球 ?

4? . 3
2 2 2

小结 本题是运用公式 R ? r ? d 求球的半径的,该公式是求球的半径的常用公式. 多面体几何性质法 例 2 已知各顶点都在同一个球面上的正四棱柱的高为 4,体积为 16,则这个球的表面 积是 A. 16? B. 20? C. 24? D. 32? 解
2 设正四棱柱的底面边长为 x ,外接球的半径为 R ,则有 4 x ? 16 ,解得 x ? 2 .

∴ 2R ?

22 ? 22 ? 42 ? 2 6,     ? R ? 6 .∴这个球的表面积是 4? R2 ? 24? .选 C.

小结 本题是运用“正四棱柱的体对角线的长等于其外接球的直径”这一性质来求解的. 补形法 例 3 若三棱锥的三个侧面两两垂直,且侧棱长均为 3 ,则其外接球的表面积是 解 .

据题意可知, 该三棱锥的三条侧棱两两垂直, ∴把这个三棱锥可以补成一个棱长为

3 的正方体,于是正方体的外接球就是三棱锥的外接球.
设其外接球的半径为 R ,则有 ? 2R ? ?
2

? 3? ? ? 3? ? ? 3?
2 2

2

? 9 .∴ R 2 ?

9 . 4

故其外接球的表面积 S ? 4? R ? 9? .
2

小结 一般地,若一个三棱锥的三条侧棱两两垂直,且其长度分别为 a、b、c ,则就

可以将这个三棱锥补成一个长方体, 于是长方体的体对角线的长就是该三棱锥的外接球的直 径.设其外接球的半径为 R ,则有 2R ?

a2 ? b2 ? c2 .

寻求轴截面圆半径法 例 4 正四棱锥 S ? ABCD 的底面边长和各侧棱长都为 2 ,点 S、A、B、C、D 都 在同一球面上,则此球的体积为 . 解 设正四棱锥的底面中心为 O1 ,外接球的球心为 O ,如图 1 所示.∴由球的截面的性质,可得 OO1 ? 平面ABCD .
D C O1 A 图3 B S

又 SO1 ? 平面ABCD ,∴球心 O 必在 SO1 所在的直线上. ∴ ?ASC 的外接圆就是外接球的一个轴截面圆,外接圆的半径就 是外接球的半径. 在 ?ASC 中,由 SA ? SC ?

2,AC ? 2 ,得 SA2 ? SC 2 ? AC 2 .

∴ ?ASC是以AC为斜边的Rt? . ∴

AC 4? ? 1 是外接圆的半径,也是外接球的半径.故 V 球 ? . 2 3

小结 根据题意, 我们可以选择最佳角度找出含有正棱锥特征元素的外接球的一个轴截 面圆,于是该圆的半径就是所求的外接球的半径.本题提供的这种思路是探求正棱锥外接球 半径的通解通法, 该方法的实质就是通过寻找外接球的一个轴截面圆, 从而把立体几何问题 转化为平面几何问题来研究.这种等价转化的数学思想方法值得我们学习. 确定球心位置法 例 5 在矩形 ABCD 中, AB ? 4, BC ? 3 ,沿 AC 将矩形 ABCD 折成一个直二面角

B ? AC ? D ,则四面体 ABCD 的外接球的体积为 125 125 125 125 ? ? ? ? A. B. C. D. 12 9 6 3 解 设矩形对角线的交点为 O ,则由矩形对角线互相平分,可知 OA ? OB ? OC ? OD .∴点 O 到四面体的四个顶点 A、B、C、D 的 距离相等, 即点 O 为四面体的外接球的球心, 如图 2 所示.∴外接球的半 5 4 125 3 ? .选 C. 径 R ? OA ? .故 V 球 ? ? R ? 2 3 6

D C B

A

O 图4


相关文档

多面体外接球半径的几种求法
多面体外接球半径常见的几种求法
多面体外接球半径常见的5种求法
多面体外接球半径常见的求法
关于多面体外接球半径常见的求法
多面体外接球半径常见的五种求法
多面体外接球半径内切球半径的常见几种求法
多面体外接球半径常见求法
多面体的外接球半径怎么求
多面体外接球半径常见的四种求法
学霸百科
电脑版 | 学霸百科